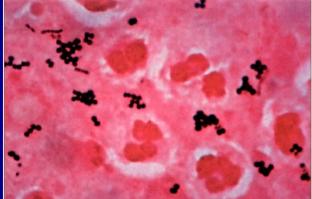
RESISTANT PATHOGENS

John E. Mazuski, MD, PhD Professor of Surgery

SCHOOL OF MEDICINE

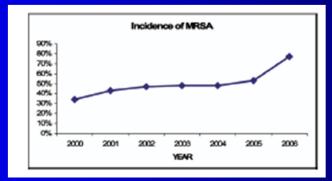
Disclosures


- Contracted Research: AstraZeneca, Bayer, Merck.
- Advisory Boards/Consultant: Allergan (Actavis, Forest Laboratories), AstraZeneca, Bayer, Merck (Cubist), Pfizer.

- Resistant Gram positive pathogens:
 - Methicillin-resistant Staphylococcus aureus (MRSA).
 - Vancomycin-resistant Enterococcus (VRE).
- Resistant Gram negative pathogens;
 - Enterobacteriaceae:
 - Extended spectrum-β-lactamase (ESBL)-producing E. coli.
 - Carbapenemase-producing Klebsiella sp.
 - Non-lactose fermenters:
 - Pseudomonas aeruginosa.
 - Acinetobacter spp.

MRSA

• Types of infections:


- Bloodstream infection.
 - CLABSI.
- Endocarditis.
- Pneumonia.
- Osteomyelitis.
- Skin/soft tissue infections.

MRSA Skin/Soft Tissue Infections

Increased incidence of SSTI: and in the numbers of those infections due to MRSA:

Table 1. Estimated total number of US hospital admissions for SSTIs and infectious pneumonia, 2000–2004*							
Principal diagnosis	2000	2001	2002	2003	2004	Change from 2000 to 2004	
SSTI	674,939	701,672	757,858	810,768	869,777	194,830 (+28.9%)	
Infectious pneumonia	1,202,387	1,177,972	1,229,204	1,272,686	1,172,304	-30,083 (-2.5%)	
*SSTL skin and soft tissue in	fection. Source: He	althcare Cost and	Utilization Project	National Inpatient S	Sample, 2000-200	04.	

 Increased incidence in the number of patients undergoing operative management of SSTI



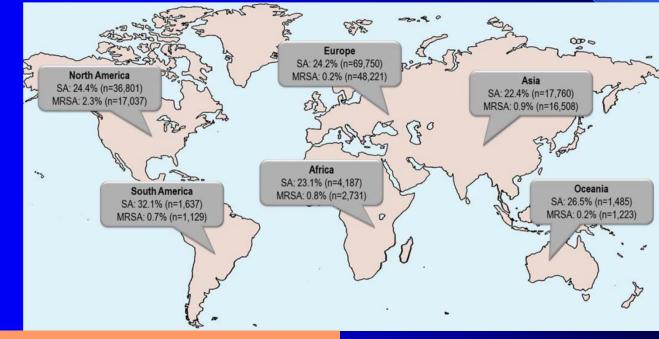
Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Edelsberg J et al: Emerging Infect Dis 2009;15:1516 Awad S et al. Am J Surg 2007;194:606

• Prevalence of MRSA in ER patients with SSTI:

Microbiology of SSI: 2011 NHSN Data

	All Proce	edures	Ortho	pedic	Abdo	ninal	nal Cardiac		Ob/Gyn N		Neuro	Neurological	
PATHOGEN	N	%	N	%	N	%	N	%	N	%	N	%	
Staphylococcus Aureus													
Methicillin Susceptible	1,656	14.2	1,112	24.9	131	3.1	272	20.3	35	4.1	61	19.6	
Methicillin Resistant	1,199	10.3	779	17.4	141	3.3	193	14.4	34	4.0	21	6.7	
Not Tested	97	0.8	67	1.5	6	0.1	17	1.3	4	0.5	2	0.6	
Escherichia coli.	1,184	10.2	203	4.5	773	18.1	55	4.1	123	14.4	8	2.6	
Coagulase-negative staphylococci	1,084	9.3	601	13.5	128	3.0	194	14.5	45	5.3	78	25.0	
Enterococcus faecalis	691	5.9	174	3.9	383	9.0	38	2.8	76	8.9	4	1.3	
Pseudomonas aeruginosa	561	4.8	169	3.8	210	4.9	104	7.8	29	3.4	14	4.5	
Klebsiella (pneumoniae/oxytoca)	491	4.2	92	2.1	285	6.7	54	4.0	29	3.4	11	3.5	
Enterobacter spp.	483	4.1	168	3.8	185	4.3	76	5.7	20	2.3	13	4.2	
Enterococcus spp.	410	3.5	73	1.6	256	6.0	18	1.3	35	4.1	2	0.6	
Enterococcus faecium	290	2.5	39	0.9	201	4.7	15	1.1	7	0.8	2	0.6	
Candida albicans	218	1.9	12	0.3	157	3.7	19	1.4	14	1.6	5	1.6	
Other <i>Candida</i> spp. or NOS	124	1.1	17	0.4	82	1.9	13	1.0	2	0.2	2	0.6	
Acinetobacter baumanii	40	0.3	21	0.5	6	0.1	6	0.4	2	0.2	2	0.6	
Other	3,122	26.8	941	21.1	1,320	31.0	267	19.9	397	46.6	87	27.9	
TOTAL	11,650	100.0	4,468	100.0	4,264	100.0	1,341	100.0	852	100.0	312	100.	


Courtesy of American College of Surgeons Division of Education

Data provided by Philip Ricks, CDC

Clinical Congress 2015

MRSA Carriage

- Found in 2-3% of the normal U.S. population.
 - Much less common than MSSA carriage.
 - Rates are lower in Europe and other areas.
 - Higher prevalence in ICU patients (9%), during outbreaks, and in some high prevalence populations.

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

McKinnell JA, et al. Infect Control Hosp Epidemiol 2013;34:161 Verhoeven PO et al. Expert Rev Anti Infect Ther 2014;12:75

Community-Associated MRSA (CA-MRSA)

- Less resistant than healthcare-associated strains of MRSA (HA-MRSA).
 - Typically susceptible to clindamycin, trimethoprim-sulfamethoxazole, tetracyclines, and variably to fluoroquinolones.
- Produce Panton-Valentine leukocidin and other toxins.
 - Necrosis due to these toxins may be important in pathogenesis.

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Pichereau S, Rose WE. Exp Opin Pharmacother 2010;11:3009

Community-Associated MRSA

- CA-MRSA is increasingly prevalent in hospitalized patients.
 - Suppression of virulence factors in HA-MRSA strains may make it less pathogenic.
 - Larger resistance plasmid makes HA-MRSA less robust.
- Mathematical models suggest CA-MRSA strains will increasingly replace HA-MRSA strains by in hospitalized patients.

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Mediavilla JR et al. *Curr Opin Microbiol* 2012;15:588 Otter JA, French GL. *J Hosp Infect* 2011;79:189 D'Agata MC et al. *Clin Infect Dis* 2009;48:274 Skov RL, Jensen KS. *J Hosp Infect* 2009;73:364

Antibiotic Therapy for CA-MRSA: Summary of Recommendations

Outpatient treatment (oral):

- Clindamycin^{#*}
- Trimethoprim/sulfamethoxazole^{#*}
- A tetracycline (doxycycline or minocycline)^{#*}
- Linezolid^{#*}
- Fluoroquinolones[#]
- Erythromycin[#]

#Surgical Infection Society

*Infectious Diseases Society of America

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015 May A et al. Surg Infect 2009;10:267 Liu C et al. Clin Infect Dis 2011:52:285

Antibiotic Therapy for CA-MRSA: Summary of Recommendations

Inpatient treatment:

- Vancomycin (or teicoplanin, where available)^{#*}
- Linezolid^{#*}
- Daptomycin^{#*}- Not effective for pulmonary infections
- Televancin*
- Clindamycin*
- Quinupristin/dalfopristin# Rarely used
- Tigecycline[#] FDA black box warning on potentially decreased efficacy

***Surgical Infection Society**

*Infectious Diseases Society of America

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015 May A et al. Surg Infect 2009;10:267 Liu C et al. Clin Infect Dis 2011:52:285

Antibiotic Therapy for MRSA: Recently Released Agents

Ceftaroline

- Cephalosporin with anti-MRSA activity.
- Glycopeptides:
 - Oritavancin
 - Dalbavancin
 - Both have very prolonged half-lives
- Tedizolid
 - An oxazolidinone with less drug:drug interactions than linezolid.

Clinical Congress 2015

 NHSN data - 35.5% of enterococci causing invasive infections in the U.S. are resistant to vancomycin.

- Incidence of VRE is substantially lower in Europe.
- *E. faecium* accounts for the majority of VRE in US hospitals.

Table 2 Surveillance of vancomycin-resistant enterococci around the world									
Species	Percent of Enterococcus isolates resistant to vancomycin by region (no of isolates)								
	Europe ⁸ 2013	US'' 2009–20	10	Worldwide ¹¹⁵ 2007–2012	Canada ⁵⁰ 2007–2011	Asia-Pacific ¹¹⁸ 2007–2008	Latin America ¹¹⁸ 2007–2008		
E. faecium	8.8 (729)	79.4 (2,57	(2)	-	22.4 (60)	14.1 (270)	48.1 (54)		
E. faecalis	1.0 (126)	8.5 (444)		10.3 (27)	0.1 (1)	0.01 (440)	3.1 (195)		
All enterococci	4.0 (855)	35.5 (3,0	6)	-	6.0 (61)	11.9 (710)	12.9 (249)		

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Driscoll T, Crank CW. Infect Drug Resist 2015:8:217

VRE Infections

- Types of infections due to VRE are typical of infections due to susceptible enterococci:
 - Intra-abdominal.
 - Less than 10% of IAI are due to enterococci.
 - Urinary tract.
 - Bacteremia.
 - Endocarditis (3% of patients with VRE bacteremia).
 - Skin/soft tissue.
 - CNS uncommon.
 - Respiratory very rare.

VRE Colonization

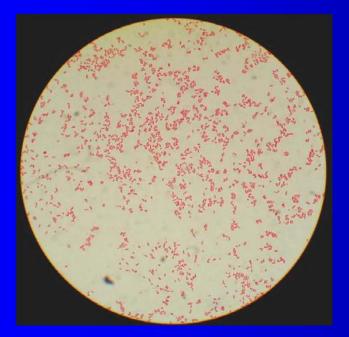
- VRE infections develop in patients colonized with VRE.
- VRE colonization is primarily depends on acquisition in healthcare institutions
 - Contingent on:
 - 1) Reservoir of VRE.
 - 2) A "susceptible host".

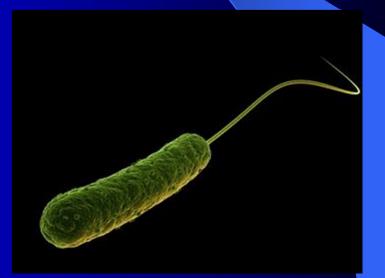
The "Susceptible Host" for VRE Colonization

- Risk factors for colonization:
 - Prolonged length of stay, especially in the ICU.
 - Surgical procedures.
 - Premorbid condition and severity of illness.
 - Liver transplant patients.
- Antibiotic therapy is a major risk factor:
 - Vancomycin, third-generation cephalosporins, ciprofloxacin, aminoglycosides, aztreonam, imipenem, anti-anaerobic agents.
 - Number of antibiotics.
 - Duration of antibiotic exposure.

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

DeLisle S and Perl TM. *Chest* 2003;123:504S Zirakzadeh A, Patel R. *Mayo Clin Proc* 2006;81:529 E, Cataldo MA. *Int J Antimicrob Agents* 2008; 31:99 Ziakas PD, et al. Am J Transplant 2014;14:1887


VRE Treatment


Susceptibilities of vancomycin-resistant E. faecium:

Nichol et al.	Sader et al.
0	
23	42
100	100
100	100
75.8	21.8
99.4	87
60.6	
	0 23 100 100 75.8 99.4

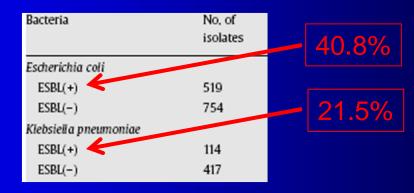
Courtesy of American College of Surgeons Division of Education Clinical Congress 2015 ichol KA et al. Int J Antimicrob Agents 2006;27:392 Sader HS et al. BMC Infect Dis 2007;7:29

RESISTANT GRAM NEGATIVE BACTERIA

E. coli: Fluoroquinolone Resistance

- Found in both community-acquired and healthcare-associated strains.
- Susceptibilities of *E. coli* isolates from intraabdominal infections:
 - Africa 80%.
 - Asia 47%.
 - Europe 77%.
 - Latin America 52%.
 - Middle East 55%.
 - North America 72%.
 - South Pacific 80%.

Extended-Spectrum β-Lactamases

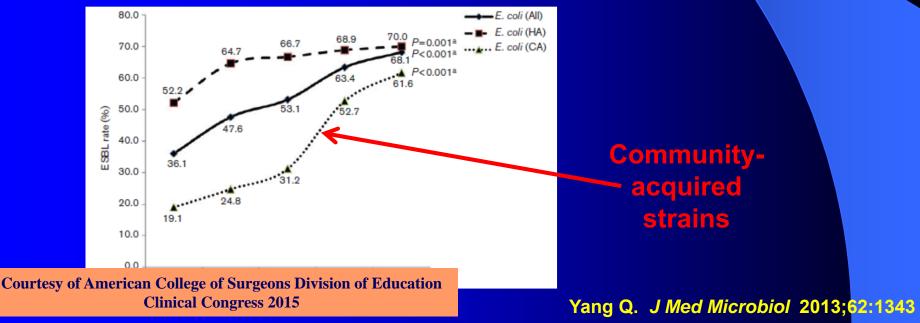

- Over 1300 β-Lactamases have been identified.
- Ambler Classification
 - Class A
 - The most common types cleave cephalosporins, aztreonam, but not carbapenems.
 - However, some have carbapenemase activity.
 - Class B
 - Metallo-β-lactamases cleave nearly all β-lactams.
 - No inhibitors commercially available at present.
 - Class C
 - AmpC-lactamases
 - Can be induced by cephalosporins.
 - Class D
 - Cleave anti-staphylococcal penicillins.
 - Some may have carbapenemase activity.

Bebrone C et al. Drugs 2010;70:651 Nordmann P, et al. Emerg Infect Dis 2011;17:1791

Enterobacteriaceae: β-Lactam Resistance

 ESBL-producing strains of *E. coli* are common in Asia and Latin America.

Intra-abdominal infections in the Asia-Pacific region, 2010



Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

ueh PR. Int J Antimicrob Agents 2012;40[Suppl]:S1

Enterobacteriaceae: β-Lactam Resistance

 ESBL-producing *E. coli* strains are increasingly encountered in isolates from patients with community-acquired intra-abdominal infections.

Data from China

Enterobacteriaceae: β-Lactam Resistance

 ESBL prevalence in *E. coli* intra-abdominal isolates from Latin America (2008-2009):

Country	All	n ESBL*	% ESBL
Argentina	176	11	6.3
Brazil	74	10	13.5
Chile	190	56	29.5
Colombia	120	10	8.3
Dominican Republic	38	6	15.8
Ecuador	84	30	35.7
Guatemala	123	37	30.1
Mexico	232	96	41.4
Panama	65	3	4.6
Puerto Rico	47	0	0
Venezuela	217	64	29.5
Latin America	1366	323	23.6

Enterobacteriaceae: Carbapenem Susceptibilities

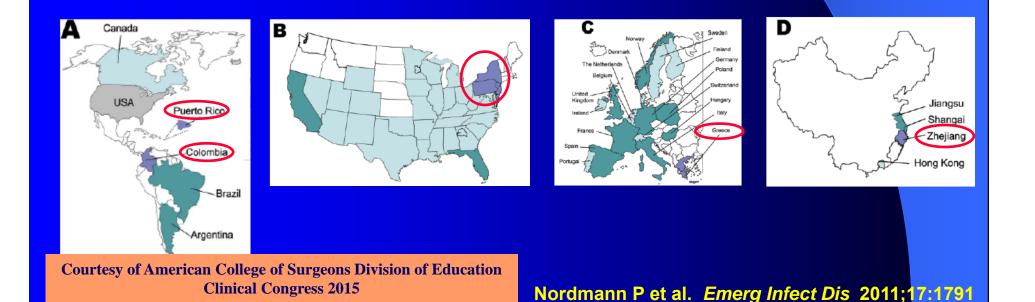
 Resistance patterns of Gram negative pathogens isolated from patients with intra-abdominal infections in the Asia-Pacific region, 2010.

	Ceftriaxone	Ceftazidime	Cefepime	Piperacillin/ Tazobactam	Ertapenem	Imipenem	Cipro- floxacin
	CRO	CAZ	FEP	PTZ	EPM	IPM	CIP
Escherichia coli							
ESBL(+)	0,6	35,7	6,4	89,4	99,0	99,8	21,6
ESBL(-)	84,8	86,5	98,0	92,4	98,8	99,2	67,1
Klebsiella pneumoniae							
ESBL(+)	1,8	29,8	17,5	65,8	95,6	98,3	34,2
ESBL(-)	95,9	96,2	99,5	96,9	98,6	98,8	92,6
Pseudomonas aeruginosa	0,7	63,9	65,3	69,0	-	62,1	71,5
Enterobacter doacae	42,2	56,2	81,8	66,9	77.7	86,0	81,8
Acinetobacter baumanni	i 0,0	16,0	18,3	20,6	-	20,6	16,8
Courtesy of American College of Surgeons Division of Education Clinical Congress 2015 Jeh PR. Int J Antimicrob Agents 2012; 40[Suppl]:							

Carbapenem Resistance

 Although susceptibility of *Enterobacteriacae* to carbapenems remains high in Asia, resistance of other Gram negative bacilli to carbapenems is increasing.

Country	Pseudomonas aeruginosa	Enterobacteriaceae	Acinetobacter baumannii	All isolates
New Zealand	10.3	12.5	-	11,7
Philippines	31.1	2.9	25.0	18,9
Singapore	23.3	4.2	90,5	22,1
Thailand	28.7	0.4	76,3	22,2
Vietnam	46.7	5.6	89.5	35.0
Overall	29.8	2.8	73.0	23,0

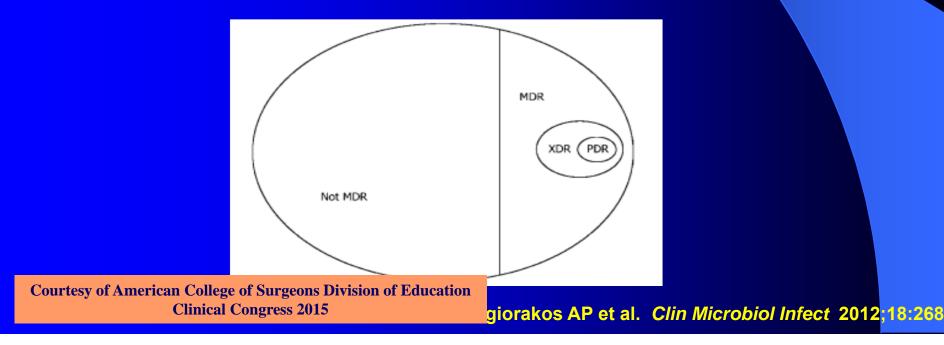

Resistance in Gram negative bacteria

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

atisin P, et al: Int J Antimicrob Agents 2012; 39:311

Carbapenem Resistance in Klebsiella spp.

- Klebsiella pneumoniae carbapenemaseproducing strains are becoming established in some geographic areas.
- Resistant to most β-lactam antibiotics.



Resistance in Non-Lactose Fermenting Gram Negative Bacteria

- P. aeruginosa and Acinetobacter spp.
- Multiple resistance mechanisms:
 - β-lactamases.
 - Efflux pumps.
 - Target site modifications.
 - Outer membrane modifications.

Resistance in Non-Lactose Fermenting Gram Negative Bacteria

- Antimicrobial selection may result in highly resistant organisms:
 - Multidrug-resistant (MDR) bacteria.
 - Extensively drug-resistant (XDR) bacteria.
 - Pandrug-resistant (PDR) bacteria.

Treatment of Resistant Gram Negative Bacteria

- Carbapenems are frequently the first line agents.
- Carbapenem-sparing agents:
 - Tigecycline has activity against many resistant microorganisms.
 - Not active against *Pseudomonas*.
 - FDA black box warning; should be used in combination with another agent.
 - Other β-lactam antibiotics:
 - Piperacillin/tazobactam.
 - Cephamycins (cefoxitin, cefotetan).
 - Fluoroquinolones, aminoglycosides, fosfomycin, colistin.

Newly-Approved Antibiotics

Ceftolozane/tazobactam:

- Newly-approved agent with enhanced antipseudomonal activity.
 - Has in vitro activity against many MDR and XDR strains of P. aeruginosa.
- Has increased activity against a number of ESBLproducing *Enterobacteriaceae*.
- Not active against carbapenemase-producing strains.
- Poor activity against Acinetobacter spp.

Newly-Approved Antibiotics

Ceftazidime/avibactam:

- Enhanced activity against many ESBL-producing Enterobacteriaceae.
 - Has *in vitro* activity against KPC-producing organisms (Ambler class A), but not against metallo-β-lactamase producing strains (Ambler class B).
- Enhanced anti-pseudomonal activity.
- Poor activity against Acinetobacter spp.

Antimicrobial Stewardship Programs

- Selecting appropriate patients for antimicrobial therapy.
- Appropriate selection of antimicrobials.
- Appropriate dosing of antimicrobials.
- Appropriate route of administration.
- Appropriate duration of antimicrobial therapy.

Courtesy of American College of Surgeons Division of Education Clinical Congress 2015

Society for Healthcare Epidemiology of America, et al. Infect Control Hosp Epidemiol 2012;33:322 Cotta MO, et al. Expert Rev Anti Infect Ther 2014;12:581

The Optimal Antimicrobial Agent for Surgical Infections

Source Control

Summary

- Community-associated MRSA is established in North America.
- ESBL-producing *E. coli* are increasingly common in many parts of the world.
- There are significant threats related to even more resistant Gram negative bacteria.
- Antimicrobial stewardship programs are important for preserving our current antibiotic resources.

