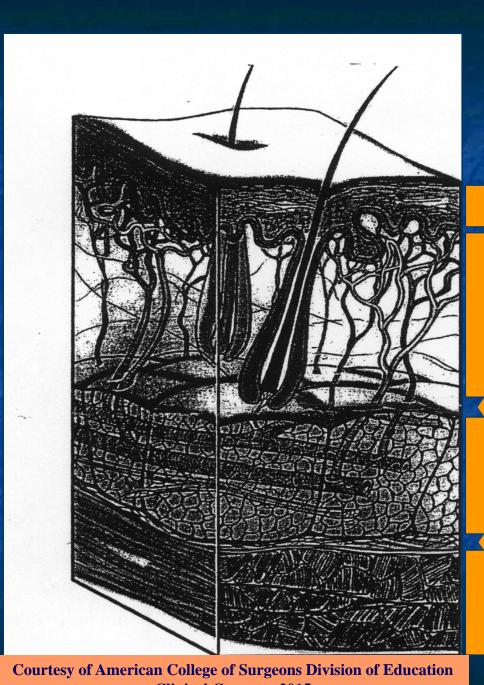
Necrotizing Soft Tissue Infections: Emerging Bacterial Resistance


Eileen M. Bulger, MD
Professor of Surgery
Harborview Medical Center
University of Washington

Objectives

- Review definition & diagnostic criteria for NSTI
- Identify the most common bacterial organisms & toxin profile
- Discuss emerging resistance patterns
- Discuss antibiotic management strategies

Necrotizing Soft Tissue Infections (NSTI)

- First described by Jones (1871), US Civil War
 - group A, ß-hemolytic strep. & Staph aureus
 - "Hospital gangrene"
- Involvement of the male genitalia described by Fournier (1883)
- "Hemolytic streptococcal gangrene" (Meleney 1924)
- "Necrotizing fasciitis" (Wilson 1952)
- TODAY: Necrotizing soft tissue infections
 - An infection of the soft tissue with associated necrosis requiring operative intervention
 - Usually in the context of a critically ill patient
 - IVDU, Morbid obesity, emerging resistance

Anatomic layer

Necrotizing.

Epidermis

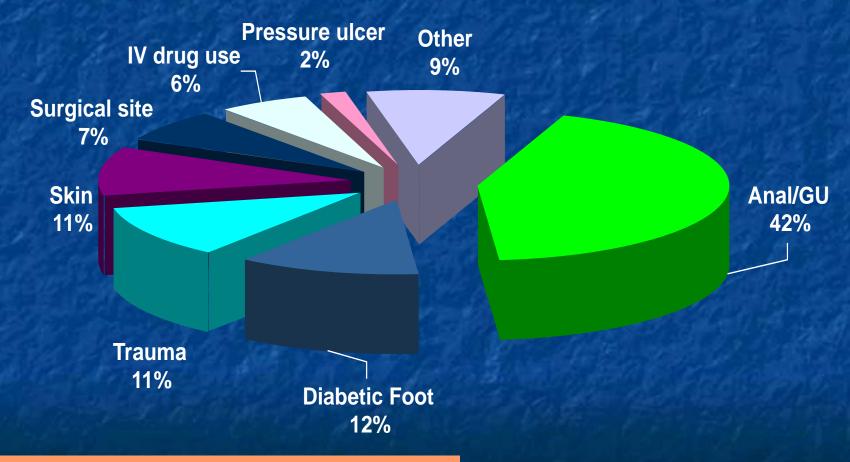
Dermis

Cellulitis

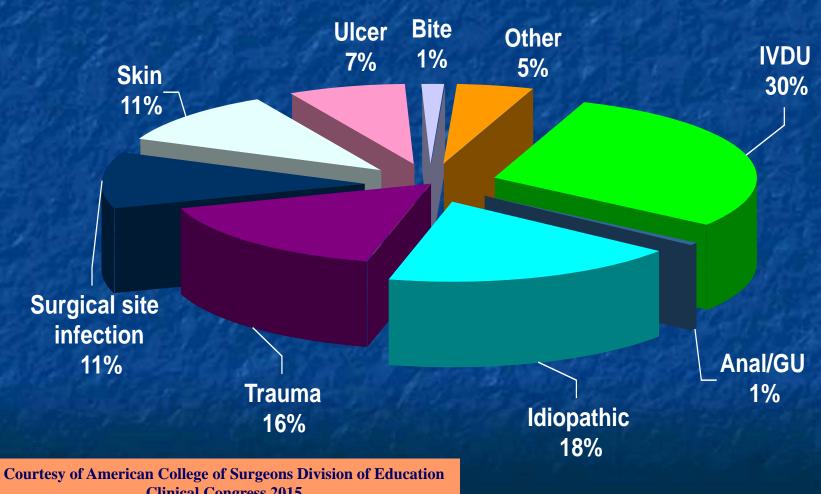
Superficial fascia

Subcutaneous fat, arteries, veins

Fasciitis


Deep fascia

Muscle


Myonecrosis

Clinical Congress 2015

Etiology of NSTI Elliott, Ann Surg, 1996

Etiology of NSTI Anaya, Arch Surg, 2004

Clinical Congress 2015

Making the diagnosis of NSTI

- Constellation of symptoms, physical signs and laboratory assessment
- Symptoms
 - Pain out of proportion to physical findings
- Signs
 - Shock, organ dysfunction if late presentation
 - Local "hard signs"
 - WBC, Na
- High risk population?
 - IVDU, Diabetes, obesity

Hard Signs

Gas on radiograph

Tense edema

- Tense edema
- Purple discoloration
- Cutaneous gangrene

Pannus Infections

Fournier's Gangrene, skin changes often an understatement

Delay Associated with Increased Morbidity & Mortality

- UCLA series 2010
 - Debridement >12 hrs after ED arrival
 - Higher mortality
 - Increase in incidence of septic shock
 - Increase in incidence of renal failure
 - Increase in number of debridments required
 - Mean 7.4 vs 2.3

Most common organisms?

- Monomicrobial infections
 - Clostridium perfringens (rarely others)
 - Group A streptococci
 - Methicillin resistant staph aureus
- Polymicrobial infections
 - All of the above plus gram negative rods and anaerobes
- Rare but reported
 - Vibrio vulnificus (exposure to warm sea water)
 - Aeromonas Hydrophilia (warm, brackish fresh water)

Group A streptococcus

- Rapidly progressive, may lead to Toxic Shock Syndrome
- May be seeded from remote pharyngeal infection
- M proteins
 - Filamentous cell membrane protein, antiphagocytic
 - Associated with increased virulence
- Toxins:
 - Pyrogenic exotoxin A,B,C
 - Steptococcal superantigen

Antimicrobial Coverage for Group A Strep

- High dose Penicillin remains highly effective
- DOSE: 4-6 million units q 4hrs
- Clindamycin recommended for potential anti-toxin effects
- PCN allergy: Vancomycin, Linezolid

Clindamycin for Group A Strep

- Carpetis et al, Clinical Infectious Diseases 2014
 - 84 cases severe GAS infections in Australia
 - Clindamycin treated patients had more severe disease but lower mortality
 - 15% vs 39%
 - Adjusted OR 0.31, 95%CI 0.09-1.12)
 - Addition of IVIG appeared to provide additional benefit

Community Acquired MRSA

- Recent CDC report: 60% of community isolates of staph aureus are methicillin resistant; some communities have reported > 70%
- Majority of these are skin and soft tissue infections
- Panton-Velentine leukocidin gene: more virulent infections
- NSTI due to CA-MRSA have been reported*

* NEJM 325:1145, 2005

Antimicrobial Coverage for CA-MRSA

- Oral therapy for outpatients: Bactrim,
 Doxycycline, Fluoroquinolones
 (moxifloxacin most potent),
 - Avoid Erythromycin (emerging resistance 5-64%)
- IV therapy: Vancomycin,, Linezolid, Daptomycin(monitor CPK), Rifampin (synergy only)
 - More recent strains with Clindamycin

Clostridial Infections

- 70-80% C. Perfringens, germination time 8 minutes
- Invade and rapidly destroy healthy muscle
- α toxin (phospholipase C) and θ toxin (perfringolysin)
 - Hemolysis, microvascular thrombosis, muscle necrosis
 - Destruction of PMNs and impaired migration
 - Direct inhibition of myocardial contractility
 - Indirect induction of systemic cytokine expression

Clindamycin

- Excellent first line therapy due to coverage of streptococci, clostridia, and MRSA as well as anaerobic coverage for mixed infections
- High doses recommended to bind toxin & reduce toxin production
 - 900-1200 mg every 6 hours
- 5% of C. perfringens strains are clindamycin resistant thus used in combination with PCN
- Do not use alone for MRSA due to emerging resistance

Rare but Reported

- Vibrio Vulnificus
 - Exposure of an open wound in warm sea water
 - Doxycycline plus Ceftazidime
- Aeromonas Hydrophilia
 - Exposure to warm fresh water/brackish water
 - Doxycycline plus Cipro or ceftriaxone

Summary: Antimicrobial Therapy

- Empiric antimicrobial spectrum should cover streptococci,
 MRSA, clostridia, and gram negatives
- Empiric therapy
 - Penicillin 6 million units q4h
 - Strep, clostridium
 - Clindamycin 1200 mg q6h
 - Anaerobic coverage (clostridium)
 - Protein synthesis inhibitor reduces toxin production
 - Vancomycin for endemic MRSA
 - Gram negative coverage: Fluoroqinolones, gentamicin
- Mixed infections (diabetic foot/Fourniers): VANCOMYCIN PLUS: Piperacillin/tazobactam, ertapenem, meropenem, imipenem-cilastin

Surgical Management

- Early intervention, prioritize OR availability
- Wide debridement of all necrotic tissue
 - Decompress facial planes
 - May require amputation
- Scheduled return to OR 12 to 24 hours, repeated debridement based on patient condition and progression of necrosis
- Reconstruction: Team Approach